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Abstract

In a relatively extensive context, (de)homogenized Grébner bases are studied
systematically. The obtained results reveal further applications of Grobner bases
to the structure theory of algebras.

1. Introduction

Let K be a field. In the computational Grébner basis theory for a

commutative polynomial algebra K[x;, ..., x,,| or for a non-commutative
free algebra K(Xl, v X ), it is a well-known fact that a homogenous

Grobner basis is easier to be obtained, that is, by virtue of both the
structural advantage (mainly the degree-truncated structure) and the
computational advantage (mainly the use of a degree-preserving fast
ordering), most of the practically used commutative or non-commutative
Grobner basis algorithms produce a Grébner basis by homogenizing
generators first (if the given generators are not homogeneous), and then,
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in turn, producing a homogeneous Grébner basis and dehomogenizing it.
On the other hand, Grébner bases and the (de)homogenization (i.e.,
homogenization and dehomogenization) techniques have been combined
in ([7], [9], [10], [11]) to study some global structure properties of algebras
defined by relations. Following the idea of ([7], [9], [10], [13]) concerning
(de)homogenized Grobner bases, in this paper, we systematize and
deepen the study on this topic. More precisely, after giving a quick
introduction to Groébner bases for ideals in an algebra with a skew
multiplicative K-basis in Section 1, we employ the (de)homogenization

technique as used in loc. cit. to clarify through Section 2 and Section 3,

e the relation between Grobner bases in R and homogeneous Grébner
bases in R[t] (Theorems 2.3 and 2.5), where R = ®,.yR, is an N-

graded K-algebra with an SM K-basis (i.e., a skew multiplicative K-basis,
see the definition in Section 1) consisting of homogeneous elements such

that R has a Grobner basis theory, and R[t] is the polynomial ring in

commuting variable ¢ over R;

e and the relation between Grébner bases in K(X) and homogeneous
Grébner bases in K(X, T) (Theorems 3.3 and 3.5), where K(X) =
K(Xi, ..., X,,) is the free K-algebra of n generators and K(X, T) = K
(X1, ..., X, T) is the fee K-algebra of n +1 generators.

This makes a solid foundation for us to achieve the following goals:
Firstly, in both cases mentioned above, demonstrate a general
algorithmic principle of obtaining a Grobner basis for an ideal I generated
by non-homogeneous elements, and thereby obtaining a homogeneous
Grobner basis for the homogenization ideal of I, by passing to dealing
with the homogenized generators (Propositions 2.7 and 3.7); Secondly,

find all homogeneous Grébner bases in R[t] that correspond bijectively to

all Grébner bases in R (Theorem 2.9), respectively, find all homogeneous

Grobner bases in K(X, T) that correspond bijectively to all Grébner
bases in K(X) (Theorem 3.9); Thirdly, characterize all graded ideals in
R[t] that correspond bijectively to all ideals in R, respectively,
characterize all graded ideals in K(X, T) that correspond bijectively to
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all ideals in K(X), in terms of Grébner bases (Theorems 2.10 and 3.10).

Based on the results obtained in previous sections, we show in Section 4
that algebras defined by dh-closed homogeneous Grébner bases (see the
definition in Sections 2 and 3) can be studied as Rees algebras (defined
by grading filtration) effectively via studying algebras with simpler
defining relations as demonstrated in ([10], [11]). A typical stage that
may bring Propositions 4.1 and 4.2 into play is indicated by Theorem 2.12
(where R[t] is replaced by the commutative polynomial K-algebra

K[xqy, ..., x,] with R = K[x1, ..., Xj_1, Xj11, ..., Xp),t =x;,1 <i<n)
and Theorem 3.12 (where K(X,T)= K(Xi,..., X,) with K(X)=K
<X1, ey Xifl’ Xi+l’ ey Xn>’ T = Xi’ 1<i< n)

Throughout the paper, N denotes the additive monoid of nonnegative
integers; all algebras considered are associative algebras with
multiplicative identity 1; and all ideals considered are meant two-sided

ideals. If S is a nonempty subset of an algebra, then we use (S) to denote
the two-sided ideal generated by S. Moreover, if K is a field, then we write

K™ for the set of nonzero elements of K, i.e., K* = K — {0}.

1. Grobner Bases w.r.t. SM K-bases

Let K be a field. In this section, we sketch the Grébner basis theory
for K-algebras with an SM K-basis (i.e., a skew multiplicative K-basis)
introduced in [10].

Let R be a K-algebra, and let B be a K-basis of R. Adopting the
commonly used notation and terminology in computational algebra, we

use lowercase letters w, u, v, s, ... to denote elements in B and call an

element w € B a monomial. If < is a well-ordering on B, f € R, and

kiui, 7»1' eK*,ui EB, Up < Ug < - < Ug,

S
f =
i=1

then the leading monomial, leading coefficient, and leading term of f are
respectively, denoted by
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LM(f) = u,, LC(f) = Ay, LT(f) = hyu.

Furthermore, if < satisfies the following conditions:

(Mo1) if w, u,v e B,u <v, and uw # 0, vw # 0, then LM (vw) < LM
(vw);

(Mo2) if w, u,v e B,u <v, and wu # 0, wv # 0, then LM (wu) < LM
(wv);

(Mo3) if w, u, v € B and LM (uw) = v, then u < v, w < v,
then < is called a monomial ordering on B.

If R has a K-basis B satisfying

u-v=\w, where A € K*, w e B,

u, v € B implies
oru-v=0,

then B 1is called a skew multiplicative K-basis (abbreviated SM K-basis).
If a K-algebra R has an SM K-basis and a monomial ordering < on B,
then the pair (B, <) is called an admissible system of R; in this case, the

division of monomials in R is defined as follows: u, v € B, u|v, if and only

if there is some A € K* and w, s € B such that v = Awus; furthermore,
the division of monomials induces a <-compatible division algorithm for

elements in R, and consequently, a Grobner basis theory for R may be
carried out, that is, if I is a nonzero ideal of R, then I has a (finite or
infinite) Grobner basis G in the sense that if f € I, f # 0, then there is

some g € G such that LM(g)/LM(f) (see Proposition 1.2 below).

Commutative polynomial K-algebra, non-commutative free K-algebra,
path algebra over K, the coordinate algebra of a quantum affine n-space
over K, and exterior K-algebra are typical K-algebras with an SM K-basis
and a Grobner basis theory (cf. [1], [2], [3], [4], [5], [12]).

Theorem 1.1. Suppose that the K-algebra R has an admissible
system (B, <) with B an SM K-basis, and let I be an ideal of R. For a subset

G c I, the following statements are equivalent:
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(1) G is a Grobner basis of I,
1) For f e I, if f # 0, then f has a Grobner presentation, i.e.,
f = Zkijwijgjvij, kij S K*, wij, Uij S B, gj S g,
iJ
satisfying LM (w;;gjv; )< LM(f), and there is some j° such that
LM (w;j+g jsvjj+ ) = LM(f);

(iii) (LM(I)) = (LM(G)), where (LM(I)) is the ideal of R generated by
the set LM(I) = {LM(f)| f € I}, and (LM(G)) is the ideal of R generated
by the set LM(G) = {LM(f)| f € G}. O

Suppose that the K-algebra R has an admissible system (B, <) with
B an SM K-basis, and let I be an ideal of R. If G is a Grobner basis of
and any proper subset of G cannot be a Grobner basis, then G is called a
minimal Grébner basis of I. It follows easily from Theorem 1.13ii) that G
is a minimal Grébner basis of I, if and only if LM(g;)fLM(gy) for

81, 82 € G with g1 # go.

Proposition 1.2. Suppose that the K-algebra R has an SM K-basis
and an admissible system (B, <). The following two statements hold.

(1) Every ideal I of R has a minimal Grobner basis:
G={gel|ifg el and g' # g, then LM(g') f LM(g)}.

(1) If R =®,cnR, is an N-graded K-algebra and B consists of N-
homogeneous elements, then every graded ideal I has a minimal

homogeneous Grobner basis, i.e., a minimal Grobner basis consisting of

homogeneous elements (it is sufficient to consider homogeneous elements of
Iin (1) above). O

By the definition of a minimal Grébner basis, it is not difficult to see
that, if G is any Grobner basis of the ideal I, then the division algorithm

enables us to produce from G, a minimal Groébner basis.
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Let R be a K-algebra that has an SM K-basis 5 and an admissible

system (B, <). Then, any nonempty subset S c R determines a subset of

monomials
N(S) = {w e B|LM(f) fw, f € S},

which is usually called the set of normal monomials in B (mod S). Let
be an ideal of R. By Theorem 1.1, it is easy to see that, if G is a Grobner
basis of I, then N(I)= N(G); and furthermore, each f € R has an

expression of the form f = zi,jkijwijgjvij +717, where A;; € K", wjj, Vjj
€ B, g; € G, and either ry =0 or r; has a unique linear expression of

the form ry = ka[wg with &, € K*, w, € N(G).

We finish this section by characterizing a Grobner basis G in terms of
N(G), which, in turn, gives rise to the fundamental decomposition of the
K-space R by I, respectively by (LM (I)).

Theorem 1.3. Let I = (G) be an ideal of R generated by the subset G.
With notation as above, the following statements are equivalent.

(1) G is a Grobner basis of 1.

(i) Consider the K-subspace spanned by N(G), denoted K-span N(G).
Then the K-space R has the decomposition

R =1 ® K-spanN(G) = (LM(I)) ® K-spanN(G).

(iii) The canonical image N(G) of N(G) in K(X)/(LM(I)) and
K(X) /I forms a K-basis for K(X)/(LM(I)) and K(X)/ I, respectively.

2. Central (De)homogenized Grobner Bases

Let R = ®,cn R, be an N-graded algebra over a field K. Throughout

this section, we fix the following assumption: R has an SM K-basis B

consisting of N-homogeneous elements, i.e., if w € B, then w € R, for

some p € N.
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By Section 1, if R has an admissible system (B, <), then every ideal
of R has a Grobner basis. Let R[t] be the polynomial ring in commuting
variable ¢t over R (i.e., rt = tr for all r € R). Then, as we will see soon,
with respect to the mixed N-gradation and a suitable monomial ordering,
R[t] has a Grobner basis theory, in particular, every graded ideal of R[t]

has a homogeneous Groébner basis. By means of the central
(de)homogenization technique as used in ([7], [9], [10]), the present
section aims to clarify in detail the relation between Groébner bases in R

and homogeneous Grébner bases in R[t]. Moreover, graded ideals in R][t]

that correspond bijectively to all ideals in R are characterized in terms of
dh-closed Grobner bases (see the definition later).

Note that R[t] has the mixed N-gradation, that is, R[t] = @,z R[t],

is an N-graded algebra with the degree-p homogeneous part

R[t], = { Z Fit/

i+j=p

FieRi,jZO},peN.

Considering the onto ring homomorphism ¢: R[t] - R defined by
&(¢) = 1, then for each f e R, there exists a homogeneous element F e
R[t]p, for some p, such that ¢(F) = f. More precisely, if f = f, + f,_1 +
ot fps With [y e R, f,_; € R

D> and fp # 0, then

f* = fp + tfp—l +oot tsfp—s
is a homogeneous element of degree p in R[t]p satisfying ¢o(f*) = f. We

call the homogeneous element f* obtained this way the central

homogenization of f with respect to ¢ (for the reason that ¢ is in the center
of R[t]). On the other hand, for an element F e R[t], we write

F* = (I)(F),

and call it the central dehomogenization of F with respect to ¢ (again for
the reason that ¢ is in the center of R[t]). Hence, if I is an ideal R, then
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we write I = {f"| f € I} and call the N-graded ideal (I") generated by
I*, the central homogenization ideal of Iin R[t] with respect to ¢; and if
J is an ideal of R[t], then since ¢ is a ring epimorphism, ¢(<J/) is an ideal
of R, so we write J, for ¢(J)=1{H, =¢(H)|H e J} and call it the
central dehomogenization ideal of J in R with respect to . Consequently,

henceforth, we will also use the notation (/. )" = {(h.) | h € J}.

Lemma 2.1. With every definition and notation made above, the
following statements hold.

() For F, G € Rt], (F +G), = F. + G, (FG), = F.G..
(ii) Forany f € R, (f*)* = f.

then p > q and t"(F,)" = F

v

(iii) If F e R[t], and if (F,)" e R[t],,

with r = p-q.

(iv) If I is an ideal of R, then each homogeneous element F e (I") is

of the form t"f*, for some r € N and f e I.

(v) If J is a graded ideal of R[t], then for each h € J,, there is some

homogeneous element F e J such that F, = h.

Proof. By the definition of central (de)homogenization, the

verification of (1)-(v) is straight forward. O
Suppose that the given N-graded K-algebra R = Dpen Ry has an
admissible system (B, < g,) with <, an N-graded monomial ordering on

B, i.e., the monomial ordering <,, is determined by a well-ordering < on

8r

B subject to the rule: for u, v € B,

deg(u) < deg(v),
U <g v if Jor
deg(u) = deg(v) and u < v,
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where deg( ) denotes the degree-function on elements of R (note that
elements in B are homogeneous by our assumption). Taking the K-basis
B* = {t'w|w e B, r € N} of R[t] into account, then since B" is obviously

a skew multiplicative K-basis for R[t], the N-graded monomial ordering

<gr On B extends to a monomial ordering on B*, denoted <¢—gr» s

follows:

T r . .
ttw, <t-gr t 2w, if and only if w, <gr Wy, Or Wy = wy and 1 < 1y.

Thus, R[t] holds a Grébner basis theory with respect to the admissible

system (B", <;_g,).

It follows from the definition of <, g, that t" <, g w for all integers
r>0 and all w € B-{1} (if B contains the identity element 1 of R).

Hence, although elements of B* are homogeneous with respect to the

mixed N-gradation of Rl[t], <, is not a graded monomial ordering on

B*. Nevertheless, as described in the lemma below, since < gr is an N-

graded monomial ordering on B, leading monomials with respect to both

monomial orderings behave in a compatible way under taking the central

(de)homogenization.

Lemma 2.2. With notation given above, the following statements

hold.
W) If f € R, then
LM(f*) = LM(f)w.r.t. <;_g on B".
(i) If F is a nonzero homogeneous element of R[t], then
LM(F,) = LM(F), wrt. <4 on B.

Proof. Since the central homogenization is done with respect to the
degree of elements in R, that is, if f=f,+f,1++f,_g with

fyeRp fpjeRyj, and f, #0, then f" =f, +tfpq ++1f,q,



44 HUISHI LI and CANG SU

the equality LM(f) = LM(f,) = LM(f") follows immediately from the

definitions of <, and <;_g,.

To prove (ii), let F e R[t]p be a nonzero homogeneous element of

degree p, say
F = }\.trw + kltrlwl + .-+ }\.Strsws,

where A, A e K, r,1; e N,w, w; € B, such that LM(F)=t"w.
Noticing that B consists of N-homogeneous elements and R[t] has the
mixed N-gradation by the previously fixed assumption, we have d(t"w)
=d(t"w;)=p,1<i<s Thus, w=uw; will imply r = r;, and thereby
t'w = triwi. So, we may assume that w # w;, 1 <i < s. Then, it follows

from the definition of <, ., that w; <g w and r<n,1<ic<s

Therefore, LM (F,) = w = LM(F),, as desired. O

The next result is a generalization of ([7] Theorem 2.3.2).

Theorem 2.3. With notions and notations as fixed before, let I be an
ideal of R, and (I*) the central homogenization ideal of I in R[t] with
respect to t. For a subset G c I, the following two statements are

equivalent.

(1) G is a Grobner basis for I in R with respect to the admissible
system (B, <g);

(i) G* = {g"| g € G} is a Grébner basis for (I") in R[t] with respect

to the admissible system (B*, <;_g;).

Proof. In proving the equivalence below, without specific indication,
we shall use Lemma 2.2(1) wherever it is needed.

(i) = (i) First note that G* — (I"). We prove further that, if

F e (I"), then LM(g")|LM(F) for some g € G. Since (I") is a graded



ON (DE)HOMOGENIZED GROBNER BASES 45

ideal, we may assume, without loss of generality, that F'is a homogeneous

element. So, by Lemma 2.1(iv), we have F =t"f* for some f e I. It

follows from the equality LM (f*) = LM(f) that

LM(F) = ' LM(f*) = ' LM(f). 1)
If G is a Grébner basis for I, then LM(f)= AvLM(g)w, for some

L e K* ge@G, and v, w € B. Thus, by (1) above, we get
LM(F) = {"LM(f) = A¢"vLM (g" )w.
This shows that LM (g")| LM(F), as desired.

(i) = (i) Suppose G* is a Grobner basis for the homogenization ideal
(I'Y of I'in R[t]. Let f eI Then LM(f)=LM(f")=aLM(g")w
= wLM(g)w, for some A € K*, v, w € B, and g € G. This shows that
LM(g)|LM(f), i.e., G is a Grobner basis for I'in R. O

We call the Grébner basis G* obtained in Theorem 2.3 the central

homogenization of G in R[t] with respect to t, or G* is a central

homogenized Gréobner basis with respect to t.

By Theorem 1.3, Lemma 2.2, and Theorem 2.3, we have immediately
the following corollary.

Corollary 2.4. Let I be an arbitrary ideal of R. With notation as
before, if G is a Grobner basis of I with respect to the data (B, <), then,

with respect to the data (B", <;_g,), we have
N((I")) = N(G") = {t'w | w € N(G), r e N},

that is, the set N((I*)) of normal monomials in B*(mod (I")) is
determined by the set N(I)= N(G) of normal monomials in B (mod I).

Hence, the algebra R[t]/{I") = R[t]/(G") has the K-basis
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N((I")) = {t'w|w e N(I), r e N}. 0

We may also obtain a Grobner basis for an ideal I of R by
dehomogenizing a homogeneous Grébner basis of the ideal (I*) c R[t].

Below, we give a more general approach to this assertion.
Theorem 2.5. Let J be a graded ideal of R[t]. If 4 is a homogeneous
Grébner basis of J with respect to the data (B, <i_gr), then

4 =1{G.| G € ¥} is a Gribner basis for the ideal J, in R with respect to
the data (B, <g4).

Proof. If ¢4 is a Grobner basis of J, then ¢ generates JJ and hence
4 = ¢(¥) generates J, = ¢(J). For a nonzero f € J,, by Lemma 2.1(v),

there exists a homogeneous element H € J such that H, = f. It follows

from Lemma 2.2 that
LM(f) = LM(f") = LM((H.)"). 1)

On the other hand, there exists some G € ¢ such that LM(G)| LM (H),

l.e.,
LM(H) = M"TwLM(G)t™v, 2)

for some A e K, rn, 7 €N w,ve B But by Lemma 2.1(1ii), we also

have ¢"(H,)" = H for some r € N, and hence
LM(H)=1LM(¢:"(H,)") = 'LM(H,)"). 3)
So, (1) + (2) + (3) yields
MY 2WILM(G)v = LM(H)
= t"LM((H.)")

= "LM(f).
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Dehomogenizing both sides of the above equality, by Lemmas 2.1(1) and
2.2(11), we obtain

MoLM (G, )v = AwLM(G),v = LM(f).

This shows that LM(G,)| LM(f). Therefore, & is a Grobner basis for
J - O

We call the Grobner basis 4 obtained in Theorem 2.5, the central
dehomogenization of ¥4 in R with respect to ¢, or 4% 1is a central

dehomogenized Grébner basis with respect to t.

Corollary 2.6. Let I be an ideal of R. If % is a homogeneous Grobner
basis of (I') in R[t] with respect to the data (B, <, g ), then
94 =1{g:|g € 9} is a Grobner basis for I in R with respect to the data
(B, <g,). Moreover, if I is generated by the subset F and F* c 4, then
F c 4.

Proof. Put J = (I"). Then since J, = I, it follows from Theorem 1.5
that, if ¢ is a homogeneous Grobner basis of J, then 4 is a Grébner

basis for I. The second assertion of the theorem is clear by Lemma 1.1(ii).
O
Let S be a nonempty subset of R and I = (S), the ideal generated by
S. Then, with S* = {f*|f € S}, in general (S*)<(I") in R[t] (for
instance, consider S = { ¥y —x -y, y% + 1} in the commutative

polynomial ring K[x, y] and S* in K][x, y, t] with respect to ). So, from

both a practical and a computational viewpoint, it is the right place to set
up the procedure of getting a Grébner basis for I, and hence a Grébner

basis for (I *> by producing a homogeneous Grébner basis of the graded
ideal (S™).

Proposition 2.7. Let I = (S) be the ideal of R generated by a subset

S. Suppose that Grébner bases are algorithmically computable in R and
hence in R[t]. Then a Grébner basis for I and a homogeneous Grébner

basis for (I") may be obtained by implementing the following procedure:



48 HUISHI LI and CANG SU

Step 1. Starting with the initial subset S* = {f"|f € S} consisting
of homogeneous elements, compute a homogeneous Grobner basis 4 for the

graded ideal (S*) of R[t].

Step 2. Noticing (S*), = I, use Theorem 2.5 and dehomogenize ¢

with respect to t in order to obtain the Grobner basis 4, for I.

Step 3. Use Theorem 2.3 and homogenize %, with respect to t in order

to obtain the homogeneous Grébner basis (4.)" for the graded ideal (I™).

O

Based on Theorems 2.3 and 2.5, we proceed now to find those
homogeneous Grébner bases in R[t] that correspond bijectively to all

Grobner bases in R.

Considering the central (de)homogenization with respect to ¢, a
homogeneous element F ¢ R[t] is called dh-closed if (F,)" = F; a subset
S of R[t] consisting of dh-closed homogeneous elements is called a dh-
closed homogeneous set; if a dh-closed homogeneous set ¢ in RJ[t] forms a

Groébner basis with respect to <t—gr> then it 1s called a dh-closed
homogeneous Grobner basis.

To better understand the dh-closed property introduced above, we
characterize a dh-closed homogeneous element as follows.

Lemma 2.8. With notation as before, for a homogeneous element
F e R[t], with respect to (B, <g) and (B*, < g ), the following
statements are equivalent:

() Fis dh-closed, i.e., (F,)" = F;

(i) LM(F,) = LM(F);

(iii) F cannot be written as F =t"H with H a homogeneous element
of R[t] and r > 1;

(iv) t f LM (F).
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Proof. Using Lemma 2.1 combined with the definitions of <, _,,. and
(F,)", the verification of (i) = (i) = (i) = @(v) = @) is
straightforward. O

Theorem 2.9. With respect to the systems (B, <g.) and (B", <;_g,),

there is an one-to-one correspondence between the set of all Grobner bases
in R and the set of all dh-closed homogeneous Grébner bases in R|t]:

(Grébner bases G in R) {dh-closed homogeneous},
Grébner bases ¢ in R|[t]
g - G,
A “« @,

and this correspondence also gives rise to a bijective map between the set
of all minimal Grobner bases in R and the set of all dh-closed minimal
homogeneous Grobner bases in R|[t].

Proof. Bearing the definitions of homogenization and dehomogeniza-
tion with respect to ¢ in mind, by Theorems 2.3 and 2.5, it can be verified
directly that the given rule of correspondence defines an one-to-one map.
By the definition of a minimal Grébner basis, the second assertion follows
from Lemmas 2.2(1) and 2.8(i1). O

Below, we characterize the graded ideal generated by a dh-closed
homogeneous Grobner basis in R]t].

Theorem 2.10. With notation as before, let J be a graded ideal of Rt]

and ¥ be a minimal homogeneous Grébner basis of J. Under (B, <g,)

and (B*, <;_g), the following statements are equivalent:
(1) ¢ is a dh-closed homogeneous Grobner basts;
(i) o/ has the property ((J.)") = J;

(iii) The R[t} module R[t]/J is t-torsionfree, ie., if f=f+d e
R[t]/J and f # 0, then tf # 0, or equivalently, tf ¢ oJ;

(iv) tR[t]NJ = tJ.
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Proof. (i) = (i) By Theorem 2.5, ¢4 is a Grobner basis for J, in R

with respect to (B, <g,.). Since ¢ is dh-closed, it follows from Theorem
2.3 that, ¢ = (4)" is a Grébner basis for ((J,)"). This shows that
J = (F) = ((J)).

(i1) = (1) Note that J is a graded ideal and ¢ is a homogeneous

element in R[t]. It is sufficient to prove that ¢ does not annihilate any

nonzero homogeneous element of R[¢]/<J. Thus, assuming F € R[t], and

tF e J, then since J = ((I.)"), we have

(F.)" = (tF)" e ((J.)") = d.
It follows from Lemma 2.1(iii) that, there exists some r € N such that
F =t"(F,)" e, as desired.
(iii) < (@iv) Obvious.

(111) = (1) Note that ¢ is a homogeneous Grébner basis by the

assumption. For each g € ¢4, by Lemma 2.1(ii1), there is some r € N

such that ¢"(g.)" = g. It follows that with respect to <; o, we have

LM(g)= t"LM((g.)"). Since R[t]/J is t-torsionfree, if r > 0, then
(g.)" €dJ. Thus, there is some g' €% such that g'#g and
LM(g')|LM((g.«)"). Hence LM(g')|LM(g), contradicting the
assumption that ¢ is a minimal Grébner basis. Therefore, we must have
r=0,ie., (g.)" = g. This shows that ¢ is dh-closed. O

Corollary 2.11. With notation as before, let J be a graded ideal of
R[t]. If, with respect to (B, <g.) and (B", <,_g ), J has a dh-closed

minimal homogeneous Grobner basis, then every minimal homogeneous
Graébner basis of J is dh-closed.
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Proof. This follows from the fact that each of the properties (i1) — (iv)
in Theorem 2.10 does not depend on the choice of the generating set for oJ.
O

Let J be a graded ideal of R[t]. If J has the property mentioned in
Theorem 2.10(i), i.e., ((J.)') =, then we call J a dh-closed graded

ideal. This definition generalizes the notion of a (¢, )"- closed graded ideal

introduced in ([8], CH.III). It is easy to see that, there is an one-to-one
correspondence between the set of all ideals in R and the set of all dh-
closed graded ideals in R[t]:

{ideals I in R} < {dh-closed graded ideals / in R[t]},
I - (1),
J . «— J.

By the foregoing argument, to know whether a given graded ideal oJ of
R[t] is dh-closed, it is sufficient to compute a minimal homogeneous
Grobner basis ¢ for J (if Grobner basis is computable in R), and then
use the definition of a dh-closed homogeneous set or Lemma 2.8 to check
whether ¢ is dh-closed. This procedure may be realized in, for instance,
commutative polynomial K-algebras, non-commutative free K-algebras,
path algebras over K, the coordinate algebra of a quantum affine n-space
over K, and exterior K-algebras, because Grobner bases are computable in
these algebras and their polynomial extensions.

Focusing on the commutative polynomial K-algebra K[x, ..., x,] in

n variables, the good thing is that, the foregoing results can be applied to
K[x;, ..., x, ] with respect to each x;,1 <i < n. To see this clearly, let

us put x; =t, R = K[xq, ..., Xj_1, Xj11, ..., X, ], and K[x;, ..., x,]| =
R[t]. Moreover, let (B, <g,) be any fixed admissible system for R, where
<gr 1s a graded monomial ordering on the standard K-basis B of R with
respect to a fixed (weight) N-gradation. Then R[t] has the mixed
N-gradation and the corresponding admissible system (B, <t_g,),

where <;_g. is the monomial ordering obtained by extending <,, on the

8r
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standard K-basis B* of R[t]. Instead of mentioning a version of each

result obtained before, we highlight the respective version of Theorems
2.5 and 2.9 in this case as follows.

Theorem 2.12. With the preparation made above, the following
statements hold.

(1) For each x; =t,1 <i < n, if 4 is a homogeneous Grobner basis of
the graded ideal J in R[t] = K[xy, ..., x, ] with respect to (B, <;_g),
then 4 = {g.|g € 4} is a Grébner basis for the ideal J, in R = K[xy,

cy Xj_1s Xi41s oo » Xy | with respect to (B, <g).

(1) For each x; =t,1 <1 < n, there is an one-to-one correspondence

between the set of all dh-closed homogeneous Grébner bases in R[t] =

K[xy, ..., x,,] and the set of all Grobner bases in R = K[xy, ..., x;_q,
Xpils ---» Xp ), under which dh-closed minimal Grébner bases correspond
to minimal Grébner bases. O

Geometrically, Theorem 2.12 may be viewed as a Grobner basis

realization of the correspondence between algebraic sets in the projective

space ]P"}{l and algebraic sets in the affine space Aanl, where n > 2.

3. Noncentral (De)homogenized Grobner Bases

In this section, we clarify in detail how Grobner bases in the free K-
algebra K(X)=K(X;,...X, ) of n generators are related to homogeneous

Grobner bases in the free K-algebra K(X,T)= K(Xy,...,X,,T) of

n +1 generators, if the noncentral (de)homogenization with respect to 7'
is employed. Moreover, in terms of dh-closed Grobner bases (see the
definition later), we characterize graded ideals of K(X , T) that correspond

bijectively to all ideals in K(X).
For a general algorithmic Grobner basis theory, we refer to [12].

Let K(X) be equipped with a fixed weight N-gradation, say each X;
has degree n; > 0,1 < i < n. Assigning to T, the degree 1 in K(X, T)
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and using the same weight n; for each X; as in K(X), we get the weight
N-gradation of K(X, T), which extends the weight N-gradation of
K(X). Let B and B denote the standard K-bases of K(X) and

K(X,T), respectively. To be convenient, we use lowercase letters

w, U, v, ... to denote monomials in B as before, but use capitals

W, U, V, ... to denote monomials in B.

In what follows, we fix an admissible system (B, < gr) for K(X),

where <. 1s an N-graded lexicographic ordering on B with respect to

gr
the fixed weight N-gradation of K(X), such that

Xil <g,. Xi2 <g,. <gr Xin'

Then, it is not difficult to see that <_,. can be extended to an N-graded

ar

lexicographic ordering <p_g, on B with respect to the fixed weight N-
gradation of K(X, T'), such that

T <pgr Xif =7-gr Xiy <17-gr = <17-gr X; ,

and thus, we get the admissible system (B, <p_gr) for K(X,T). With
respect to <4 and <p_g,, we use LM( ) to denote taking the leading

monomial of elements in K(X) and K(X, T), respectively.

Consider the fixed N-graded structures K(X) = ®peNK<X>p7 K
(X, T) = ®pnK(X, T)p, and the ring epimorphism v : K(X, T) —
K(X) defined by »(X;) = X; and »(T') = 1. Then each f € K(X) is the
image of some homogeneous element in K(X, T). More precisely, if
f=fp+fpa++fp_s with f, € K(X)p, fp-j € K(X)p_j, and f, # 0,

then

f=fyp+Thp++ Ty
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is a homogeneous element of degree p in K(X, T)p such that w(f) = f.

We call the homogeneous element }7 obtained this way the noncentral

homogenization of f with respect to T (for the reason that 7' is not a
commuting variable). On the other hand, for F € K(X, T'), we write

F. =y(F),

and call F. the noncentral dehomogenization of F with respect to T

(again for the reason that T is not a commuting variable). Furthermore, if
I = (8S) is the ideal of K(X) generated by a subset S, then we define

S=1{f|feSIUIX,T-TX;|1<i<n},
T={f|feU{X,T-TX;|1<i<n},

and call the graded ideal (T ) generated by I, the noncentral
homogenization ideal of Iin K(X, T) with respect to 7; while if JJ is an
ideal of K(X, T'), then since y is a surjective ring homomorphism, y(J)
is an ideal of K(X), so we write J. for p(J) = {H. = y(H)| H € J} and
call it the noncentral dehomogenization ideal of J in K(X) with respect

to T. Consequently, henceforth, we will also use the notation
(Jo) ={(h.) | e JJU{X;T -TX; |1 < i < n}.

It is straightforward to check that, with resspect to the data (B, <7 _gr)s
the subset {X;T -TX;|1<i<n} of K(X,T) forms a homogeneous
Grébner basis with LM(X;T -TX;)= X;T,1<i<n. In the later

discussion, we will freely use this fact without extra indication.

Lemma 3.1. With notation as fixed before, the following properties

hold.
O If F,G e K(X, T), then (F+G). =F.+G., (FG). = F.G..

(i) For each nonzero [ e K(X), (f). =1
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(iii) Let € be the graded ideal of K(X, T) generated by {X;T — TX;

|1 <i<n} If FeK(X, T)p, then there exists an L € € and a unique
homogeneous element of the form H = ZikiTriwi e K(X, T)p, where
L € K*, w; € B, such that F = L + H; moreover, there is some r € N

such that T"(H.)" = H, and hence, F = L+ T"(F.)".

(iv) Let € be as in (iii) above. If I is an ideal of K(X), F e (T) isa

homogeneous element, then there exist some L e €, f eI, and re N
suchthat F = L+ T'f.

) If J is a graded ideal of K(X,T) and {X;T-TX;|1

<i<n}cd, then for each nonzero h € J., there exists a homogeneous

element H = Z.kiTriwi e J, where ,; € K*, r; € N, and w; € B, such
1
that forsome r e N, T"(H.)" = H and H. = h.

Proof. (i) and (i) follow from the definitions of noncentral
homogenization and noncentral dehomogenization directly.

(iii) Since the subset {X;T - TX;|1 <i < n} is a Grébner basis in
K(X, T) with respect to (B, <p_gr), such that LM(X;T - TX;) = X,T,

1<i<n,if F e K(X, T)p, then the division of F by this subset yields
F =L+ H, where L € ¢, and H = ZikiTri w; 1s the unique remainder

with A; € K*, w; € B, in which each monomial T"w; is of degree p. By

the definition of <p the definition of noncentral homogenization, and

—grs
the definition of noncentral dehomogenization, it is not diffcult to see that

H has the desired property.

(iv) By (i), F = L+ T"(F.)” with L € ¢ and r e N. Since by (ii),

we have F_ e (T)N = I, thus f = F. is the desired element.
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(v) Using basic properties of homogeneous element and graded ideal

in a graded ring, this follows from the foregoing (iii). O

As in the case of using the central (de)homogenization, before turning
to deal with Grobner bases, we are also concerned about the behavior of

leading monomials under taking the noncentral (de)homogenization.

Lemma 3.2. With the assumptions and notations as fixed above, the

following statements hold.

(i) For each nonzero F e K(X), we have
LM(f) = LM(f ) wrt. <p_g onB.
() If F is a homogeneous element in K(X,T) such that
X;T Y LM(F) with respect to <p_g, for all 1 <i<n, then LM(F) =
T"w, for some r € N and w € B, such that

LM(F.) = w = LM(F).w.rt. <4 onbB.

Proof. Since the noncentral homogenization is done with respect to
the degree of elements in K(X), that is, if f = f, + f,_; + - + fp_s With

fp e K(X),, fpj e K(X), ;, and f, # 0, then f = f, + Tfpq + -+ T°
fp—s, the equality LM(f) = LM(f,) = LM(f) follows immediately from
the definitions of <, and <;_g,.

To prove (ii), let F' e K(X, T)p be a nonzero homogeneous element of
degree p. Then by the assumption, F' may be written as

F = AT w+MTNX; Wy + hoT2 X Wy + o+ M T X W,

where A, A; e K*,r,r; e Nywe B, and W; e B, such that LM(F) =
T"w. Since B consists of N-homogeneous elements and the N-gradation
of K(X) extends to give the N-gradation of K(X, T'), we have d(T"w) =

d(T""X;W;) = p,1<i<s Also note that T has degree 1. Thus, w =
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X;;W; will imply r =7, and thereby, T'w = Trinl.Wi. So, we may
assume, without loss of generality, that w = X jiWi’ 1<i<s Then, it
follows from the definition of <7 _g, that r <7, 1 <i < n. Hence, X; W;
<7_gr w,1<i<s. Therefore, (inWi )~ <gr w,1<i<n, and consequently,
LM(F.) = w = LM(F)., as desired. O

The next result strengthens ([7], Theorem 2.3.1) and ([10], Theorem

8.2), in particular, the proof of (i) = (11) given below improves the proof

of the same deduction given in [10].

Theorem 3.3. With the notions and notations as fixed above, let
I =(G) be the ideal of K(X) generated by a subset G, and (7), the
noncentral homogenization ideal of I in K(X, T) with respect to T. The

following two statements are equivalent.

(1) G is a Grobner basis of I with respect to the admissible system
(B, <gr) of K(X);

(i) G=1{g|geGlU{X,T-TX;|1<i<n} is a homogeneous Gribner
basis for (1) with respect to the admissible system (B, <r_gr) of K(X, T).

Proof. In proving the equivalence below, without specific indication,
we shall use Lemma 3.2(1) wherever it is needed.

(1) = (1) Suppose that G is a Grébner basis for I with respect to the

data (B, <4). Let F e (7) Then since (7) is a graded ideal, we may

assume, without loss of generality, that F is a nonzero homogeneous

element. We want to show that, there i1s some D e 5 such that

LM (D)| LM(F), and hence G is a Grébner basis.

Note that {X;T - TX;|1<i <n}c § with LM(X;T - TX;) = X,T.
If X,T|LM(F) for some X;T, then we are done. Otherwise,
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X;T fYLM(F) for all 1 <i < n. Thus, by Lemma 38.2311)), LM(F) = T"w
for some r € N and w € B, such that

LM(F.) = w = LM(F)_. 1)
On the other hand, by Lemma 3.1(v), we have F = L + Tq}?, where L is
an element in the ideal ¥ generated by {X;7 -TX;|1<i<n} in
K(X,T), q €N, and f e I. It turns out that

F. = (f). = f, and hence LM (F.) = LM(¥). @)

But, since G is a Grobner basis for I, there i1s some g € G such that
LM(g)| LM(f), i.e., there are u, v € B such that

LM(f)=uLM(g)v =uLM(g)v. 3)

Combining (1), (2), and (3) above, we have
w=LM(F.)=LM(f) = uLM(g)v.

Therefore, LM (g)| T"w, i.e., LM(g)| LM(F), as desired.

(i) = (i) Suppose that G is a Grobner basis of the graded ideal (T )
in K(X, T). If f e I, then since f e I, there is some D e G such that
LM(D)|LM(f). Note that LM(f)=LM(f) and thus 7 fLM(f).

Hence D = g for some g € G, and there are w, v € B, such that
LM (f) = LM(f) = wLM(&)v = wLM(g)v,
i.e.,, LM(g)| LM(f). This shows that G is a Grobner basis for Iin R. [
We call the Grobner basis a obtained in Theorem 3.3, the noncentral

homogenization of G in K(X , T) with respect to T, or a 1s a noncentral

homogenized Grobner basis with respect to 7.

By Theorem 1.3, Lemma 3.1, and Theorem 3.3, the following corollary

1s straightforward.
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Corollary 3.4. Let I be an arbitrary ideal of K(X). With notation as
before, if G is a Grobner basis of I with respect to the data (B, -<g,), then,

with respect to the data (B, <7_gr), we have
N((T)) = N(G) = {T"w|w e N(9), r € N},

that is, the set N((I)) of normal monomials in B(mod(1)) is determined

by the set N(I) = N(G) of normal monomials in B (mod I). Hence, the

algebra K(X, T)/(I) = K(X, T)/(G) has the K-basis

N((T)) = {T"w|w e N(I), r € N}. O

As with the central (de)homogenization with respect to the
commuting variable ¢ in Section 2, we may also obtain a Grébner basis for
an ideal I of K(X) by dehomogenizing a homogeneous Grébner basis of
the ideal (T ) € K(X, T). Below, we give a more general approach to this
assertion that generalizes essentially ([13], Theorem 5), in which ¥ is
taken to be a reduced Grobner basis, and its proof depends on the
reducibility of ¥.

Theorem 3.5. Let J be a graded ideal of K(X, T), and suppose that
{X;,T-TX;|1<i<n}cd. If 4 is a homogeneous Grobner basis of J
with respect to the data (B, <p_gr), then & = {G_|G € ¢} is a Grébner
basis for the ideal J. in K(X) with respect to the data (B, <g4).

Proof. If ¢ is a Grébner basis of J, then ¥ generates J and hence,
4. =y(¥) generates J. = y(J). We show next that for each nonzero

h e J., there is some G. € 4 such that LM(G~. )| LM(%), and hence
. is a Grobner basis for /..
Since {X;T -TX;|1<i<n}cJ, by Lemma 3.1(v), there exists a

homogeneous element H € J and some r € N such that 7" (H.) = H
and H. = h. It follows that
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LM(H)=T'LM((H.) ) = TrLM(l;): T"LM (h). 1)
On the other hand, there is some G € ¢ such that LM(G)| LM(H), i.e.,
there are W, V € "B such that
LM(H) = WLM(G)V. @)
But, by the above (1), we must have LM (G) = T%w, for some q € N and
w € B. Thus, by Lemma 3.2(i1),
LM(G-) = w = LM(G).w.r.t. <, onbB. 3
Combining (1), (2), and (3) above, we then obtain
LM(h)=LM(H).
= (WLM(G)V ).
= W.LM(G).V-
= W.LM (G- )V..
This shows that LM(G~ )| LM (h), as expected. O
We call the Grobner basis 4. obtained in Theorem 3.5, the noncentral

dehomogenization of ¢ in K(X) with respect to T, or 4. is a noncentral

dehomogenized Grébner basis with respect to 7.

Corollary 3.6. Let I be an ideal of K(X). If ¥ is a homogeneous
Grébner basis of (I) in K(X, T) with respect to the data (B, <p_g),
then 4. ={g.|g € ¥} is a Grobner basis for I in K(X) with respect to

the data (B, < g, ). Moreover, if I is generated by the subset F and Fcy,
then F c 4..

Proof. Put J = (T ). Then since J. = I, it follows from Theorem 3.5
that, if ¢ is a homogeneous Grébner basis of J, then 4 is a Grébner

basis for I. The second assertion of the theorem is clear by Lemma 3.1(1).

0
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Let S be a nonempty subset of K(X) and I =(S), the ideal generated

by S. Then, with S = {f|f e S}U{X,T - TX;|1<i<n}, in general,
(S)e(T) in K(X, T) (for instance, consider S = {Y® - XY - X -V, Y2

-X + 3} in the free algebra K(X, Y) and S in K(X,Y, T) with respect
to 7). Again, as we did in the case dealing with (de)homogenized Grébner

bases with respect to the commuting variable ¢, we take this place to set

up the procedure of getting a Grobner basis for I, and hence, a Grobner

basis for (f ) by producing a homogeneous Grobner basis of the graded
ideal (S).

Proposition 3.7. Let I = (S) be the ideal of K(X) as fixed above.
Suppose the ground field K is computable. Then, a Grobner basis for I and
a homogeneous Grébner basis for (7) may be obtained by implementing

the following procedure:

Step 1. Starting with the initial subset
S={F|feSIUIXT-TX;|1<i<n},

compute a homogeneous Grobner basis ¥ for the graded ideal (§ ) of
K(X, T).

Step 2. Noticing (§)~ = I, use Theorem 3.5 and dehomogenize ¥
with respect to T in order to obtain the Grobner basis 4. for 1.

Step 3. Use Theorem 3.3 and homogenize 4. with respect to T in
order to obtain the homogeneous Gréobner basis (4.)” for the graded ideal
(1) O

Based on Theorems 3.3 and 3.5, we are able to determine those

homogeneous Grébner bases in K(X, T') that correspond bijectively to all

Grébner bases in K(X).
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A homogeneous element F e K(X,T) 1is called dh-closed, if

(F.)” = F; asubset S of K(X, T) consisting of dh-closed homogeneous

elements is called a dh-closed homogeneous set.

To better understand the dh-closed property introduced above for

homogeneous elements in K(X, T), we characterize a dh-closed

homogeneous element as follows.

Lemma 3.8. With notation as before, for a nonzero homogeneous

element F e K(X, T), the following two properties are equivalent with

respect to (B, <g,) and (B, <p_gr):

(1) Fis dh-closed,

i) F = Zi%iTriwi satisfying LM(F.) = LM(F), where A; € K",
1, € N, and w; € B.

Proof. This follows easily from Lemma 3.1(iii). O

Let I =(S) be the ideal of K(X) generated by a subset S. Recall
that, we have defined

S={f|feSIU{X,T-TX;|1<i<n}.
If # is a nonempty dh-closed homogeneous set in K(X, T') such that
the subset
¢ =4 U{X;T-TX;|1<i<n},

forms a Grébner basis for the graded ideal J = (¥) with respect to

(B, -<T,g,), then we call ¢ a dh-closed homogeneous Grobner basis.

Theorem 3.9. With respect to the systems (B, <g4,) and (B, <7_gr),

there is an one-to-one correspondence between the set of all Grobner bases

in K(X), and the set of all dh-closed homogeneous Gribner bases in
K(X, T):
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dh-closed h
{Grobner bases G in K(X)} © { closed omogencous },

Grobner bases 9 in K(X, T)
g - g,
9. « g,

and this correspondence also gives rise to a bijective map between the set
of all minimal Grobner bases in K(X), and the set of all dh-closed
minimal homogeneous Grobner bases in K(X, T).

Proof. By the definitions of homogenization and dehomogenization
with respect to T, Theorems 3.3 and 3.5, it can be verified directly that
the given rule of correspondence defines an one-to-one map. By the

definition of a minimal Grobner basis, the second assertion follows from
Lemmas 3.2(1) and 3.8(11). O

Below, we characterize the graded ideal generated by a dh-closed

homogeneous Grobner basis in K(X, T'). To make the argument more
convenient, we let ¥ denote the ideal of K(X, T) generated by the
Grobner basis {X;T - TX; |1 <i < n}, and let K-span N(¥) denote the

K-space spanned by the set N(%) of normal monomials in B (mod ).

Noticing that, with respect to the monomial ordering =<7_, on
B, LM(X,T - TX;) = X,T for all 1<i<n, so each element F e K-
span N(%) is of the form F = ZixiTriwi with &; € K*, r; € N, and
w; € B.

Theorem 3.10. With the convention made above, let F# < K-
span N(¥¢) be a subset consisting of nonzero homogeneous elements.

Suppose that the subset ¢ = # U{X,T-TX;|1<i<n} forms a
minimal Grébner basis for the graded ideal J =(¥9) in K(X, T) with

respect to the data (B, <p_gr). Then, the following statements are

equivalent:
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(1) ¢ is a dh-closed homogeneous Grébner basis, i.e., € is a dh-

closed homogeneous set;
(ii) J has the property ((J.) ) = J;

(i) K(X,T)/J is a T-torsionfree (left) K(X, T)-module, i.e., if
f=f+de K(X,T)/J and f#0, then Tf #0, or equivalently,
Tf ¢ oJ,;

(iv) TK(X, T)NJ = TdJ.

Proof. 1) = (i) If ¢ is dh-closed, then by Theorem 3.5, 4 is a

Grobner basis for the ideal /. with respect to (B, < gr). Furthermore, it
follows from Theorem 3.3 that ¢ is a Grobner basis for ((J~.) ) with

respect to (B, <p_gr). Hence, J = (¥4) = ((J.)).

(i1) = (111) Noticing that o/ is a graded ideal and T is a homogeneous

element in K(X , T), it 1s sufficient to show that T does not annihilate

any nonzero homogeneous element of K(X,T)/J. Suppose F € K(X, T)p

and TF e J. Then since J = ((J.) ), we have

(F.) = (TF).) e ((J-)) = . M
Moreover, by Lemma 3.1(iii), there exist L € J and r € N such that
F=L+T'(F.). @)
Hence, (1) + (2) yields F € J, as desired.
(ii1) < (@iv) Obvious.
(i) = (@) Let H e # - {X;T-TX;|1<i<n}. Then, H:ZikiTriwi €
K-span N(¢) such that H = T"(H.) for some r € N. If r > 1, then

since K(X,T)/J is T-torsionfree, we must have (H.) eJ, and

LM(H)/LM((H-)" ). Hence, there exists some H'e # —{H} such that
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LM(H')|LM((H-~) ) and consequently, LM(H')| LM (H), contradicting

the minimality of ¢. Therefore, r = 0, i.e., H = (H.) . This shows that
S is dh-closed. 0

Corollary 3.11. With notation as before, let J be a graded ideal of
K(X, T). If, with respect to (B, <4,) and (B, <7_gr), J has a dh-closed

minimal homogeneous Grobner basis, then every minimal homogeneous
Grobner basis of J is dh-closed.

Proof. This follows from the fact that each of the properties (i1)-(iv)
in Theorem 3.10 does not depend on the choice of the generating set for oJ.
O

Let o/ be a graded ideal of K(X, T). If J has the property mentioned

in Theorem 3.10@ii), i.e., ((J~) ) =, then we call J a dh-closed graded

ideal. Tt is easy to see that, there is an one-to-one correspondence
between the set of all ideals in K(X), and the set of all dh-closed graded

ideals in K(X, T):

{ideals I in K(X)} © {dh-closed graded ideals J in K(X, T')},
I (1),
J- <« J.

\J

Note that in principle, Grobner bases are computable in K(X , T), if the

ground field K is computable. By the foregoing argument, to know
whether a given graded ideal J of K(X, T is dh-closed, it is sufficient to

check, if J contains a minimal homogeneous Grobner basis of the form
¢ =s#U {X;T -TX;|1<i<n}, in which # < K-span N(¥) is a dh-
closed homogeneous set.

Finally, as in the end of Section 2, let us point out that, if we start
with the free K-algebra K(Xq, ..., X,,), then everything we have done in
this section can be done with respect to each X; = 7,1 < i < n, that is,
just work with K(X) = K(Xy, ..., X;_1, X;,1, ..., X,) and K(X,T) =
K(Xi, ..., X,) with T = X;. Also, instead of mentioning a version of
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each result obtained before, we highlight the respective version of

Theorems 3.5 and 3.9 in this case as follows.
Theorem 3.12. For each X; =T,1<i<n, let K(X)=K(Xy,
X, Xig, o X)), KX, T) = K(Xq, ..., X)) with T = X;, and fix
the admissible systems (B, <g ), (B, <p_gr) for K(X) and K(X,T),
respectively, as before. The following statements hold.

@) If J is a graded ideal of K(X,T) that contains the subset
{X;T -TX;|j# i}, and if ¢ is a homogeneous Grobner basis of J with
respect to (B, <p_gr), then 4. = {g.|g € 9} is a Grobner basis for the
ideal J. in K(X) with respect to (B, <g4).

(11) There is an one-to-one correspondence between the set of all dh-
closed homogeneous Gréobner bases in K(X, T) and the set of all Grébner

bases in K(X), under which dh-closed minimal Grobner bases correspond

to minimal Grobner bases. O

4. Algebras Defined by dh-Closed Homogeneous
Grobner Bases

The characterization of dh-closed graded ideals in terms of dh-closed
homogeneous Grobner bases given in Section 2 and Section 3 indeed
provides us with an effective way to study algebras defined by dh-
homogeneous Grobner bases, that is, such algebras can be studied as
Rees algebras (defined by grading filtration) via studying algebras with
simpler defining relations as demonstrated in ([6], [10], [11]). Below, we

present details on this conclusion.
All notions and notations used in previous sections are maintained.
Let A be a K-algebra. Recall that an N-filtration of A is a family
FA = {F,A},.y with each F,A a K-subspace of A, such that
(1) 1 e FyA; (2) UpenFprA =A4; 3) FyA c Fp A for all p e N; and
F pAFqA c F b +qA. If A has an N-filtration FA, then FA determines two



ON (DE)HOMOGENIZED GROBNER BASES 67
N-graded K-algebras G(A) = @ ,.nG(A), with G(A), = F,A/ F, 1A,
and A = @peN;lp with le = F,A, where G(A) is called the associated
graded algebra of A and A is called the Rees algebra of A.

Let R = ®,cyR, be an N-graded K-algebra. Then R has the N-

grading filtration FR = {F,R},_y with F,R = ®,, R;. If Iis an ideal of

<p
Rand A =R/ I, then A has the N-filtration FA = {F,A} _y induced
by FR, ie., F,A=(F,R+1I)/I TFor instance, if the commutative
polynomial K-algebra R = K[x;, ..., x,, | is equipped with the natural N-
gradation, i.e., each x; has degree 1, or if the non-commutative free K-
algebra R = K(Xy, ..., X,;) is equipped with the natural N-gradation,
i.e., each X; has degree 1, then the usually used natural N-filtration FA
on A = R/ isjust the filtration induced by the N-grading filtration FR
of R. Consider the polynomial ring R[t] and the mixed N-gradation of
R[t] as described in Section 2. By ([7], [9], [10]), or in a similar way as in

loc. cit., it can be proved that there are graded K-algebra isomorphisms:
G(A) = R/(LH(I)), A = R[t]/(I"), &)
where LH(I) = {LH(f)| f € I} with LH(f) the N-leading homogeneous
element of f as defined in [10] Ge., if f=f, + fp1 + +[p_s with
fp € R,—{0}, fp_i € R,_;, then LH(f) = f,), and I" = {f*| f e I} with

f*, the homogenization of fin R[t] with respect to . Now, suppose that R

has a Grobner basis theory with respect to some admissible system
(B, <gr) as in Section 2, and let J =(¥) be a graded ideal of RJ[t]

generated by a dh-closed homogeneous Grobner basis ¢. Let I denote the
dehomogenization ideal J, of J in R with respect to ¢, i.e., I = J,. Then

by Theorems 2.5 and 2.3, we have

I=d,=(4). (I')=((J.))=(9)=J. @
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Furthermore, from ([7], [9], [10]), we know that LH(% ) = {LH(g.)| g«
€ 4.} is a Grébner basis for the graded ideal (LH (1)) in R, and so

(LH(I)) = (LH(4)). 3)
It follows from (1) + (2) + (3) that we have proved the following.

Proposition 4.1. With notation and the assumption on R as above,

putting A = R [(¥,), then there are graded K-algebra isomorphisms:
G(A)= R/(LH(4)), A =R[t]/(¥9)=R[t]/d. m

Thus, the algebra R[t]/(%)= A can be studied via studying the

algebras R/(4%)=A and R/(LH(%))= G(A). For instance, A is
semiprime (prime, a domain), if and only if A is semiprime (prime, a
domain); if G(A) is semiprime (prime, a domain), then so are A and Z; if
G(A) is Noetherian (artinian), then so are A and A; if G(A) is

Noetherian with finite global dimension, then so are A and Z, etc. (see

[6] for more details).

Turning to the free K-algebras K(X) = K(Xq, ..., X,,) and the free
K-algebra K(X,T)=(X;,...,X,,T), let the admissible system
(B, <gr) for K(X), and the admissible system (B, <p_gr) for K(X, T)
be as fixed in Section 3.

Proposition 4.2. With the convention made above, let 4 be a dh-
closed homogeneous Gréobner basis in K(X, T) with respect to the data

(B, <7_g), and put A = K(X)/(4.). Considering the N-filtration FA of
A induced by the (weight) N-grading filtration FK(X) of K(X), then

there are graded K-algebra isomorphisms:

G(A) = K(X)/(LH(4.)), A= K(X,T)/(%),
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where LH(4.)={LH(g-)| g~ € 4} with LH(g-.), the N-leading
homogeneous element of g. with respect to the N-gradation of K(X) (see

an explanation above).

Proof. To be convenient, let us put J =(¥) and I =(4). By ([7],
[9], [10]), there are graded K-algebra isomorphisms:

G(A) = K(X)/(LH(I)), A= K(X,T)/(I). 1)
By Theorems 3.5 and 3.3, we have
I=(2)=d., (I)={(J.))=(%)=4d. @)

Furthermore, from ([7], [9], [10]), we know that LH(%.) is a Grobner
basis for the graded ideal (LH(I)) in K(X), and so

(LH(I)) = (LH(%Z.)). 3)

It follows from (1) + (2) + (3) that, the desired algebra isomorphisms are
established. O

Thus, as demonstrated in ([10], [11]), the algebra K(X, T)/(¥) = A
can be studied via studying the algebras K(X)/(4.)= A, K(X)/(LH
(¢4.)) = G(A), and the monomial algebra K(X) /(LH(%.)). The reader is

referred to loc. cit. for more details.

Remark. Note that the foregoing Theorems 2.12 and 3.12 have
actually provided us with a practical stage to bring Propositions 4.1 and
4.2 into play.
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